Affiliation:
1. MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract
Anti-icing/de-icing is of fundamental importance in practical applications such as power transmission, wind turbines, and aerofoils. Despite recent efforts in developing engineering surfaces to delay ice accumulation or reduce ice adhesion, it remains challenging to design robust photothermal icephobic surfaces in a durable, low-cost, easy-fabrication manner. Here, we report an intelligent candle soot-based photothermal surface (PDMS/CS60@PDMS/Al) that can utilize sunlight illumination to achieve the multi-abilities of anti-icing, de-icing, and self-cleaning. Our method lies in the construction of hierarchical micro/nanostructures by depositing photothermal candle soot nanoparticles, which endow the surface with superior superhydrophobicity and excellent photothermal performance. The underlying mechanism is exploited by establishing the heat transfer model between the droplets and the cooled surface. We believe that the smart PDMS/CS60@PDMS/Al developed in this work could provide a feasible strategy to design intelligent engineering surfaces for enhanced anti-icing/de-icing.
Funder
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献