Intelligent Metal Welding Defect Detection Model on Improved FAST-PNN

Author:

Liu Jinxin,Li Kexin

Abstract

In order to solve the problem of accurate and efficient detection of welding defects in the process of batch welding of metal parts, an improved Probabilistic Neural Network (PNN) algorithm was proposed to build an automatic identification model of welding defects. Combined with the characteristics of the PNN model, the structure and algorithm flow of the FAST-PNN algorithm model are proposed. Extraction of welding defect image texture features of metal welded parts by a Gray Level Co-occurrence Matrix (GLCM) screens out the characteristic indicators that can effectively characterize welding defects. Weld defect texture features are used as input to build a defect classification model with FAST-PNN, for accurate and efficient classification of welding defects. The results show that the improved FAST-PNN model can effectively identify the types of welding defects such as burn-through, pores and cracks, etc. The classification recognition accuracy and recognition efficiency have been significantly improved. The proposed defect welding identification method can accurately and effectively identify the damage types of welding defects based on a small number of defect sample images. Welding defects can be quickly identified and classified by simply collecting weld images, which helps to solve the problem of intelligent, high-precision, fast real-time online detection of welding defects in modern metal structures; it provides corresponding evidence for formulating response strategies, with a certain theoretical basis and numerical reference.

Funder

PhD research start-up project of Beihua University

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3