Calcium Phosphate Loaded Biopolymer Composites—A Comprehensive Review on the Most Recent Progress and Promising Trends

Author:

Furko Monika1,Balázsi Katalin1ORCID,Balázsi Csaba1ORCID

Affiliation:

1. Centre for Energy Research, ELKH, HU1121 Konkoly-Thege M. rd 29-33, H-1121 Budapest, Hungary

Abstract

Biocompatible ceramics are extremely important in bioengineering, and very useful in many biomedical or orthopedic applications because of their positive interactions with human tissues. There have been enormous efforts to develop bioceramic particles that cost-effectively meet high standards of quality. Among the numerous bioceramics, calcium phosphates are the most suitable since the main inorganic compound in human bones is hydroxyapatite, a specific phase of the calcium phosphates (CaPs). The CaPs can be applied as bone substitutes, types of cement, drug carriers, implants, or coatings. In addition, bioresorbable bioceramics have great potential in tissue engineering in their use as a scaffold that can advance the healing process of bones during the normal tissue repair process. On the other hand, the main disadvantages of bioceramics are their brittleness and poor mechanical properties. The newest advancement in CaPs doping with active biomolecules such as Mg, Zn, Sr, and others. Another set of similarly important materials in bioengineering are biopolymers. These include natural polymers such as collagen, cellulose acetate, gelatin, chitosan, and synthetic polymers, for example, polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), and polycaprolactone (PCL). Various types of polymer have unique properties that make them useful in different fields. The combination of CaP particles with different biopolymers gives rise to new opportunities for application, since their properties can be changed and adjusted to the given requirements. This review offers an insight into the most up-to-date advancements in the preparation and evaluation of different calcium phosphate–biopolymer composites, highlighting their application possibilities, which largely depend on the chemical and physical characteristics of CaPs and the applied polymer materials. Overall, these composites can be considered advanced materials in many important biomedical fields, with potential to improve the quality of healthcare and to assist in providing better outcomes as scaffolds in bone healing or in the integration of implants in orthopedic surgeries.

Funder

National Research, Development and Innovation Office

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference217 articles.

1. Multifunctional Biopolymers-Based Composite Materials for Biomedical Applications: A Systematic Review;Khan;Nanomater. Polym. Chem. Sel.,2021

2. Calcium phosphate-based ceramic and composite materials for medicine;Barinov;Russ. Chem. Rev.,2010

3. Interfacial reinforcement in bioceramic/biopolymer composite bone scaffold: The role of coupling agent;Shuai;Colloids Surf. B Biointerfaces,2020

4. Natural, synthetic and commercially-available biopolymers used to regenerate tendons and ligaments;Heidari;Bioact. Mater.,2023

5. Implantable Devices: Issues and Challenges;Bazaka;Electronics,2013

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3