Abstract
SiC was modified by fluorine-containing organic substance 1H,1H,2H,2H-trifluoro-noctyltriethoxysilane (FAS) to change its hydrophilicity from hydrophilic to superhydrophobic nanoparticles, and the optimum conditions for hydrophobicity were effectively explored. Then, different content of fluorine-modified SiC (F–SiC) nanoparticles were added to the epoxy resin (EP) matrix to prepare composite coating samples. The results showed that the surface of SiC was modified by FAS to show superhydrophobicity, and the dispersion in EP was significantly improved. After adding F–SiC, the hydrophobicity, wear resistance and corrosion resistance of the coating were significantly improved. In addition, the corrosion resistance of the composite coating containing different contents of F–SiC was analyzed through electrochemical and salt spray tests. The results showed that the corrosion resistance of the coating was the best when the addition amount was 3 wt %. In general, the composite coating with 3 wt % F–SiC had the best overall performance. Compared with the EP coating, the water contact angle of 3 wt % F–SiC/EP composite coating was increased by 62.9%, the friction coefficient was reduced by 73.5%, and the corrosion current was reduced by three orders of magnitude. This study provides a new idea for the development of ultra-wear-resistant and anti-fouling heavy-duty coatings.
Funder
National Natural Science Foundation of China
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献