Enhancing the Performance and Stability of Perovskite Solar Cells via Morpholinium Tetrafluoroborate Additive Engineering: Insights and Implications

Author:

Bian Jianxiao12ORCID,Sun Yingtang3,Guo Jinchang1,Liu Xin1,Liu Yang1

Affiliation:

1. School of Intelligent Manufacturing, Longdong University, Qingyang 745000, China

2. Shaanxi Key Laboratory of Non-Traditional Machining, Xi’an Technological University, Xi’an 710021, China

3. Liaohe Oilfield Qingyang Exploration and Development Branch, Qingyang 745000, China

Abstract

Perovskite solar cells (PSCs), since their inception in 2009, have experienced a meteoric rise in power conversion efficiencies (PCEs), challenging established photovoltaic technologies. However, their commercial deployment is hindered by stability and performance issues related to the presence of defects at the perovskite surface and grain boundaries. This study focused on the exploration of Morpholinium tetrafluoroborate (MOT) as a post-treatment additive to mitigate these challenges. Comprehensive characterization techniques revealed that the synergistic action of Morpholine and BF4− ions in MOT substantially improved the quality of the perovskite films and passivates surface and bulk defects, yielding notable enhancements in device PCE and stability. MOT-doped PSCs exhibited a PCE of 23.83% and retain 92% of the initial PCE after 2000 h of continuous illumination under one sun condition. The findings underscore the significance of additive engineering in advancing perovskite solar cell technology, opening up prospects for high-performing and durable perovskite photovoltaic devices.

Funder

Innovation Fund Project of College Teachers of Gansu Provincial Department of Education

Qingyang City Science and Technology Planning Project

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3