Optimization of Large-Area PM6:D18-CL:Y6 Ternary Organic Solar Cells: The Influence of Film Thickness, Annealing Temperature, and Connection Configuration

Author:

Yang Jianjun1ORCID,Wang Xiansheng2,Yu Xiaobao2,Liu Jiaxuan2,Zhang Zhi1ORCID,Zhong Jian2

Affiliation:

1. College of Electron and Information, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China

2. School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China

Abstract

This research focuses on the fabrication and optimization of large-area PM6:D18-CL:Y6 ternary organic solar cells, with a particular emphasis on film thickness, annealing temperature, and the connection configuration’s impact on device performance. The experimental findings indicate that an optimal film thickness of approximately 105 nm fosters the formation of a well-interconnected network, reducing defects and significantly improving both the fill factor, which reaches 46.2%, and the power conversion efficiency (PCE) at 7.2%. An annealing temperature of 110 °C stands out as the ideal condition, resulting in the highest PCE of 8.15%. Notably, excessively high annealing temperatures lead to material aggregation, compromising device performance. Regarding the connection configurations, the study demonstrates that the 5-series 4-parallel arrangement surpasses traditional setups, achieving an impressive output power of 0.11 W. In conclusion, the meticulous control of the film thickness and annealing temperature is paramount for achieving a high PCE in large-area PM6:D18-CL:Y6 ternary organic solar cells. The 5-series 4-parallel configuration exhibits considerable promise for an enhanced power output, offering valuable insights into the development and industrialization of large-area organic solar cells.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3