High-Temperature Hot Corrosion Resistance of CrAl/NiCoCrAlY/AlSiY Gradient Composite Coating on TiAl Alloy

Author:

Sun Yuanyuan1,Miao Qiang12,Sun Shijie3,Liang Wenping1,Ding Zheng1,Niu Jiangqi4ORCID,Jia Feilong1,Xu Jianyan1,Gao Jiumei1

Affiliation:

1. College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. Wuxi Research Institute, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

3. National Key Laboratory of Advanced Composites, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China

4. Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China

Abstract

TiAl alloys are used in high-temperature components such as the turbine blades of aeroengines because of their excellent properties. However, TiAl alloys are prone to thermal corrosion when in near-ocean service. In order to solve this problem, a hot-corrosion-resistant CrAl/NiCoCrAlY/AlSiY gradient composite coating was prepared on the surface of the TiAl alloy. The phase composition and morphology of the coating were analyzed. Hot corrosion tests of the traditional NiCoCrAlY coating and CrAl/NiCoCrAlY/AlSiY gradient composite coating on a TiAl substrate were performed. The samples were coated with 75%Na2SO4 + 25%NaCl salt film and treated at 950 °C for 100 h, and the corrosion products were analyzed. The results indicate that compared with the TiAl substrate and traditional NiCoCrAlY-coated samples, the composite coating showed better hot corrosion resistance, only slightly cracking, and no corrosion loss occurred. This is mainly because the continuous Al2O3 layer can effectively resist the damage caused by the melting reaction in salt, and the Cr-rich layer can not only slow the mutual diffusion of elements but also generate a good corrosion resistance chromium oxide protective layer under serious corrosion. Moreover, the corrosion mechanism of the TiAl substrate, traditional NiCoCrAlY coating, and experimental composite coating was analyzed in detail.

Funder

National Major Science and Technology Projects of China

National Natural Science foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3