On Low-Velocity Impact Response and Compression after Impact of Hybrid Woven Composite Laminates

Author:

Li Yumin1,Jin Yongxing1,Chang Xueting2,Shang Yan3,Cai Deng’an3ORCID

Affiliation:

1. Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China

2. College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China

3. State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

This paper aims to study the low-velocity impact (LVI) response and compression after impact (CAI) performance of carbon/aramid hybrid woven composite laminates employed in marine structures subjected to different energy impacts. The study includes a detailed analysis of the typical LVI responses of hybrid woven composite laminates subjected to the impact with three different energies, as well as a comparative analysis of cracks and internal delamination damage within impact craters. Additionally, the influence of different impact energies on the residual compressive strength of hybrid woven composite laminate is investigated through CAI tests and a comparative analysis of internal delamination damage is also conducted. The results indicate that as the impact energy increases, the impact load and CAI strength show a decreasing trend, while impact displacement and impact dent show an increasing trend. The low-velocity impact tests revealed a range of failure modes observed in the hybrid woven composite laminates. Depending on the specific combination of fiber materials and their orientations, the laminates exhibited different failure mechanisms. Buckling failures were observed in the uppermost composite layers of laminates with intermediate modulus systems. In contrast, laminates with higher modulus systems showed early damage in the form of delamination within the top surface layers.

Funder

National Natural Science Foundation of China

Shanghai Commission of Science and Technology Project

Shandong Province Key Research and Development Project

Anhui Provincial Department of Transportation Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3