Microstructure and Tribological Properties of WC/Ni-MoS2 Titanium-Based Composite Coating on TC4

Author:

Wang Changhao1,Yan Xiaohui2,Zhang Tiangang2,Zhang Qiyu2,Zhang Zhiqiang2

Affiliation:

1. School of Aviation Maintenance Engineering, Chengdu Aeronautic Polytechnic, Chengdu 610100, China

2. College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China

Abstract

To improve the mechanical properties of a TC4 surface, TC4 + Ni-MoS2 + xWC (x = 5%, 10% and 15% wt.%) composite coatings were prepared by the coaxial feeding laser cladding technique, and the effect of the WC content on the microstructure and tribological properties of the coatings were investigated using multiple characterization methods. The results indicated that increasing the WC content negatively impacted the forming quality of the coating, but did not change the coating phase which predominantly comprised Ti2Ni, Ti2S, TiC, matrix β-Ti and residual WC. With the addition of WC, TiC exhibited an increase in both quantity and particle size, accompanied by a transition in growth morphology from spherical to petal-like. MoS2 completely dissolved in all coatings and the S element provided by it effectively synthesized a strip-like phase Ti2S which presented a morphology similar to the lubricating phase TiS in the Ti-based melt pool system. The microhardness and wear-resistance of all the coatings were higher than that of TC4 and gradually improved with the addition of WC, which indicated that raising the WC content was conducive to enhancing the mechanical properties of the coatings. The friction coefficient of TC4 was lower than that of the three WC content coatings, indicating that Ti2S was not the lubricating phase. The wear mechanism of all coatings was abrasive wear.

Funder

Key project of basic research funds for central universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3