Superhydrophilic Surface Creation and Its Temporal Transition to Hydrophobicity on Copper via Femtosecond Laser Texturing

Author:

Ha Jeonghong1

Affiliation:

1. Smart Forming Process Group, Korea Institute of Industrial Technology (KITECH), Ulsan 44776, Republic of Korea

Abstract

We analyzed a process to fabricate a superhydrophilic surface on copper by forming various laser-induced periodic surface structures (LIPSS) using a Ti/sapphire femtosecond laser. For these structured surfaces, the correlation between the surface structure and the wetting characteristics was analyzed by scanning electron microscopy, atomic force microscopy, and contact angle (CA) measurement. X-ray photoelectron spectroscopy (XPS) was also employed to analyze variation of the elemental composition of the surfaces. The laser treatment produced micro/nanostructures composed of ripples whose length and width are in microscale and nanoscale, respectively. At specific conditions, the CA of a water droplet was reduced to less than 1°. The superhydrophilcity is attributed to the effect of nanoholes and nanoclusters, which consist of copper (II) oxide and copper hydroxide, having a hydrophilic effect on LIPSS. However, the pristine superhydrophilic surface spontaneously became hydrophobic after being exposed to air at room temperature for about 10 days. According to XPS analysis, the surface’s transition to hydrophobic is attributed not only to the decomposition of Cu(OH)2 but also to the adsorption of oxygen molecules and/or airborne organic molecules containing carbon, which further influences the wettability.

Funder

Ministry of Science and ICT

Commercialization Promotion Agency for R&D Outcomes

Korea Institute of Industrial Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3