Comparative Study of DC and RF Sputtered MoSe2 Coatings Containing Carbon—An Approach to Optimize Stoichiometry, Microstructure, Crystallinity and Hardness

Author:

Yaqub Talha Bin,Vuchkov TodorORCID,Sanguino Pedro,Polcar Tomas,Cavaleiro AlbanoORCID

Abstract

Low stoichiometry, low crystallinity, low hardness and incongruencies involving the reported microstructure have limited the applicability of TMD-C (Transition metal dichalcogenides with carbon) solid-lubricant coatings. In this work, optimized Mo–Se–C coatings were deposited using confocal plasma magnetron sputtering to overcome the above-mentioned issues. Two different approaches were used; MoSe2 target powered by DC (direct current) or RF (radio frequency) magnetron sputtering. Carbon was always added by DC magnetron sputtering. Wavelength dispersive spectroscopy displayed Se/Mo stoichiometry of ~2, values higher than the literature. The Se/Mo ratio for RF-deposited coatings was lower than for their DC counterparts. Scanning electron microscopy showed that irrespective of the low carbon additions, the Mo–Se–C coatings were highly compact with no vestiges of columnar growth due to optimal bombardment of sputtered species. Application of substrate bias further improved compactness at the expense of lower Se/Mo ratio. X-ray diffraction, transmission electron microscopy, and Raman spectroscopy confirmed the presence of MoSe2 crystals, and (002) basal planes. Even very low carbon additions led to an improvement of the hardness of the coatings. The work reports a comparison between RF and DC sputtering of MoSe2 coatings with carbon and provides a guideline to optimize the composition, morphology, structure, and mechanical properties.

Funder

European Commission

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3