Abstract
With the rapid development of the nuclear industry and the aerospace field, it is urgent to develop structural materials that can work in ultra-high temperature environments to replace nickel-based alloys. Mo-Si-B alloys are considered to have the most potential for new ultra-high temperature structural material and are favored by researchers. However, the medium-low temperature oxidizability of Mo-Si-B alloys limits their further application. Therefore, this study carried out extensive research and pointed out that alloying is an effective way to solve this problem. This work provided a comprehensive review for the microstructure and oxidation resistance of low silicon and high silicon Mo-Si-B alloys. Moreover, the influence of metallic elements on the microstructure, phase compositions, oxidation kinetics and behavior of Mo-Si-B alloys were also studied systematically. Finally, the modification mechanism of metallic elements was summarized in order to obtain Mo-Si-B alloys with superior oxidation performance.
Funder
Anhui Province Science Foundation for Excellent Young Scholars
National Natural Science Foundation of China
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献