The Corrosion Behavior of Al/Al2O3 Composite Films with Ultra-Dense Structure Exposed to Lead-Bismuth Eutectic at 450 to 650 °C

Author:

Yin Xing1,Li Xiteng2,Wang Hao1,Zhao Ke1,Wang Jun3,Chen Le1,Wu Zhongzhen2,Chen Yong1

Affiliation:

1. Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610041, China

2. School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China

3. College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China

Abstract

Al2O3 coatings are the most promising candidate material for mitigating (lead-bismuth eutectic) LBE corrosion at elevated temperatures, but preventing inward diffusion of Pb, Bi, and O for the ceramic coating remains a critical challenge. Here, we have fabricated an amorphous Al2O3 coating with an ultra-dense structure by continuous high-power magnetron sputtering (C-HPMS). After LBE corrosion at 550 °C for 2000 h, nanocavities induced by the phase transformation from amorphous to γ-Al2O3 provide the diffusion path for Fe, O, Pb, and Bi in which the corrosion products, such as Fe3O4, PbO2, or their mixed oxides, form. Furthermore, the diffusion of Pb to the substrate and Cr segregation at the interface between the coating and substrate are observed for the sample exposed to LBE at 550 °C for 4000 h. Additionally, the hardness and interface bonding strength are enhanced after LBE corrosion. Moreover, pit corrosion was found to be the main failure mode of coating, and pits that merged with each other induced large area failure at a temperature of 650 °C. The corrosion mechanism of Al2O3 includes element diffusion, phase transformation, and chemical reaction. This work not only provides a deep understanding of the corrosion mechanism of amorphous Al2O3 coatings, but also shows the optimization method on the corrosion resistance of Al2O3 coating.

Funder

China National Nuclear Corporation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3