Indoor and Outdoor Performance Study of Metallic Zinc Particles in Black Paint to Improve Solar Absorption for Solar Still Application

Author:

Ahmad Muhammad Shakeel,Han Shwe Sin,Zafar AmadORCID,Ghafoor Usman,Rahim Nasrudin AbdORCID,Ali Muhammad UmairORCID,Rim You SeungORCID

Abstract

In this study, the effects of metallic zinc (Zn) particles were studied to increase surface temperature on a solar-still absorber, which is a major component of increased production. Various concentrations of Zn particles were mixed in black paint and applied to the absorber plate. SEM and XRD were used to examine and confirm the surface morphology and phase identification of as-received powder. UV-Vis spectroscopy was used to examine light-absorption properties. Finally, extensive indoor testing (using an improvised solar emulator) and outdoor testing were conducted to optimize the concentration. The specimens containing 10 wt% Zn in black paint showed the highest increase in temperature, i.e., 103.53 °C in indoor conditions at 1000 W/m2 irradiation, which is 59.17% higher than a bare aluminum plate and 17.57% higher than an only black-paint-coated aluminum plate. On the other hand, specimens containing 10 wt% Zn reached just 87.53 °C, compared to 80.00 °C for an only black-paint-coated aluminum plate and 60.62 °C for bare aluminum.

Funder

National Research Foundation of 302 Korea (NRF) grant funded by the Korea government

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3