Fabrication of Zn2+-Loaded Polydopamine Coatings on Magnesium Alloy Surfaces to Enhance Corrosion Resistance and Biocompatibility

Author:

Meng Lingjie1,Liu Xuhui2,Hong Qingxiang1,Ji Yan1,Wang Lingtao1,Zhang Qiuyang1,Chen Jie1,Pan Changjiang1ORCID

Affiliation:

1. Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai’an 223003, China

2. The Affiliated Huai’an Hospital, Xuzhou Medical University, Huai’an 223003, China

Abstract

In this study, inspired by the adhesion protein of mussels, a Zn2+-loaded polydopamine (PDA/Zn2+) coating was prepared on an alkali–heat-treated magnesium alloy surface, through the chelating effect of PDA with metal ions, to improve anticorrosion and biocompatibility. The results of water contact angles show that the PDA/Zn2+ coatings with different Zn2+ contents had excellent wettability, which contributed to the selective promotion of the albumin adsorption. The corrosion degradation behaviors of the modified magnesium alloys were characterized using potentiodynamic scanning polarization curves, electrochemical impedance spectroscopy (EIS), and an immersion test, the results indicate that anticorrosion was significantly improved with the increase of Zn2+ content in the coating. Meanwhile, the PDA/Zn2+ coatings with different Zn2+ concentrations demonstrated improved hemocompatibility, confirmed by assays of the hemolysis rate and platelet adhesion behaviors. In addition, the results regarding the growth behaviors of endothelial cells (ECs) suggest that, due to the sustained release of Zn2+ from the coatings, the modified magnesium alloys could enhance the adhesion, proliferation, and upregulated expression of vascular endothelial growth factor (VEGF) and nitric oxide (NO) in endothelial cells, and that better cytocompatibility to ECs could be achieved as the Zn2+ concentration increased. Therefore, the PDA/Zn2+ coatings developed in this study could be utilized to modify magnesium alloy surfaces, to simultaneously impart better anticorrosion, hemocompatibility, and endothelialization.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3