Influence of Organic Coating Thickness on Electrochemical Impedance Spectroscopy Response

Author:

de Paula Amanda Suellen1,Aroeira Barbara Mitraud1,Souza Lucas Henrique de Oliveira2,da Cruz Alisson Cristian1,Fedel Michele3ORCID,da Silva Brunela Pereira1ORCID,Cotting Fernando1ORCID

Affiliation:

1. Department of Chemical Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil

2. Nuclear Technology Development Center, Minas Gerais, Belo Horizonte 31270-901, MG, Brazil

3. Department of Industrial Engineering, University of Trento, Via Sommarive n. 9, 38123 Trento, Italy

Abstract

Electrochemical Impedance Spectroscopy (EIS) is a non-destructive and powerful technique for characterizing corrosion systems, allowing for the evaluation of surface reaction mechanisms, mass transport, kinetic evolution, and corrosion levels of materials. This study aims to analyze the progression of corrosion using EIS, with a focus on the influence of organic coating thickness. For this purpose, layers of high-purity epoxy paint were applied to carbon steel plates with thicknesses of 50 µm, 80 µm, and 100 µm. During the research, a direct correlation was observed between coating thickness and corrosion resistance, emphasizing the importance of identifying the optimal thickness for each type of coating. Additionally, it was found that thicker coatings may experience electrode penetration due to the tensions generated during deposition, resulting in cracks between the layers, while thinner coatings allow electrolyte penetration as they do not provide adequate protection to the base steel. Therefore, the 80 µm thickness demonstrated greater resistance to corrosion compared to the other tested thicknesses.

Funder

CAPES—Brazil

CNEN—Brazil

Nacional Council for Scientific and Technological Development

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3