The Adsorption Behavior of Hydrogen on the PuO2(111) Surface: A DFT+U Study

Author:

Huang Huang1,Zhu Min1,Li Yan1

Affiliation:

1. Naval University of Engineering, Wuhan 430033, China

Abstract

Based on density functional theory, a first-principles study of the adsorption behavior of hydrogen atoms on the PuO2(111) surface is carried out in this work. Models for three different surface morphologies of PuO2(111) are established. It is found that the surface with the outermost oxygen atom (sub outer Pu atom) morphology has the best stability. Based on this model, the adsorption energy, bader charge, and electronic density of the states of a hydrogen atom at different adsorption sites are calculated. Finally, we analyzed the process of hydrogen dissociation into hydrogen atoms on the surface using the cNEB method. The results indicate that the top position of the outermost oxygen atom and the bridge position of the second outermost plutonium atom are relatively stable adsorption configurations, where hydrogen atoms lose electrons and release heat, forming O-H bonds with oxygen atoms. The density of states of O-p orbital electrons will undergo significant changes, reflecting the hybridization of O-p and H-s orbital electrons, forming a stable bonding effect. The dissociation of hydrogen molecules into two hydrogen atoms adsorbed on the top of oxygen atoms requires crossing an energy barrier of 1.06 eV. The decrease in total energy indicates that hydrogen tends to exist on the PuO2(111) surface in a hydrogen atom state. The research results lay the foundation for theoretically exploring the hydrogenation corrosion mechanism of the PuO2(111) surface, providing theoretical support for exploring the corrosion aging of plutonium oxide, predicting the material properties of plutonium oxide under extreme and special environments.

Publisher

MDPI AG

Reference29 articles.

1. Ground State Theory of d-Pu;Savrasov;Phys. Rev. Lett.,2000

2. First-Principles Calculations of PuO2±x;Petit;Science,2003

3. Nature of the 5f states in actinide metals;Moore;Rev. Mod. Phys.,2009

4. Site-selective electronic correlation in α-plutonium metal;Zhu;Nat. Commun.,2013

5. Haschke, J.M., Allen, T.H., and Morales, L.A. (2000). Surface and Corrosion Chemistry of Plutonium.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3