Affiliation:
1. School of Civil and Transportation Engineering, Ningbo University of Technology, Ningbo 315211, China
2. Engineering Research Center of Industrial Construction in Civil Engineering of Zhejiang, Ningbo University of Technology, Ningbo 315211, China
Abstract
This paper presents a systematic review of the progress of the research on limestone-calcined clay cement (LC3), focusing on its low-carbon characteristics, sustainable applications, and performance. LC3 can be used to address the high carbon emission problem in the cement industry, as its use significantly reduces carbon dioxide emissions (by 30%–40%) due to clinker being partially replaced with calcined clay and limestone in its fabrication. Studies have shown that the hydration reaction of LC3 generates calcium-aluminum-silicate hydrate (C-A-S-H), carbon-aluminate, and calcium alumina, which optimize its microstructure and endow it with comparable mechanical properties (28 day compressive strength close to or exceeding that of OPC) and better durability (outstanding resistance to sulfate erosion and carbonation) compared to ordinary Portland cement (OPC). LC3 has been used in 3D printing, ocean engineering, geotechnical reinforcement, and other applications, all of which have verified its engineering feasibility. Despite the significant environmental and economic advantages of LC3, its high-temperature performance, freeze–thaw resistance, and long-term durability still need to be further investigated. This paper provides theoretical support and practical references for the development and promotion of low-carbon cement materials.
Funder
Ningbo International S&T project
Ningbo Major scientific and technological project