Abstract
The paper presents a method of modifying the inner surface of nanofibrous vascular prostheses. The modification process involves two steps: introducing a hydrophilic linker, followed by a peptide containing the arginine-glutamic acid-aspartic acid-valine (REDV) sequence. The influence of the process parameters (reaction time, temperature, initiator concentration) on morphology and the distribution of fiber diameters were examined. For selected optimal parameters, the prostheses were modified in the flow system. Modifications along the entire length of the prosthesis were confirmed—the inlet and the outlet areas showed no significant (p > 0.05) differences in the value of the contact angle and the analyzed morphological parameters. The basic physicochemical and mechanical properties of modified prostheses were analyzed. The study showed that REDV-modified prosthesis has an average fiber diameter of 318 ± 99 nm, the average pore size of 3.0 ± 1.6 μm, the porosity of 48.4 ± 8.6% and Young’s modulus of 4.0 ± 0.4 MPa. The internal diameter of prostheses remains unchained and amounts to 3 mm. Such modified prostheses can reduce the risk of blood coagulation by increasing the surface’s wettability and, most of all, by introducing endothelial cell-selective peptide. As an effect, the proposed surfaces could recruit endothelial progenitor cells directly from the bloodstream and promote the endothelium formation after implantation.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献