Effect of Top-Coat Thickness and Interface Fluctuation on the Residual Stress in APS-TBCs

Author:

Zhao Weiling12,Hu Zhongchao3,Wang Liang12,Wang Xintong3,Wu Qihao3,Liu Runpin3

Affiliation:

1. State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China

2. College of Materials Science and Optoelectronic Techonlogy, University of Chinese Academy of Sciences, Beijing 100049, China

3. Sany Heavy Industry Co., Ltd., Changsha 410100, China

Abstract

This study focused on the numerical simulation of the distribution of residual stress in yttria-stabilized zirconia (YSZ) coatings prepared with atmospheric plasma spraying (APS). We particularly investigated the stress distribution around the interface between the top coat and bond coat. During thermal spray deposition, droplets and particles deposit on the substrate in a complex manner, causing interface waviness and non-uniform stress distribution. Therefore, residual stress is an important consideration when preparing thermal barrier coatings (TBCs). Residual stresses directly affect the performance of bond coats (BCs) and ceramic top coats (TCs). To accurately evaluate residual stress, we considered interface waviness and the thickness of the ceramic top coat and conducted a detailed analysis of stress distribution. The results show that compressive stress exists at the TC/BC interface, which may be caused by the mismatch in the thermal expansion coefficient between the YSZ top coat and the substrate, potentially leading to coating delamination. Moreover, the residual stress at the TC/BC interface significantly increases with an increasing YSZ thickness. When the top-coat thickness exceeds 300 μm, stress concentration and failure of the coating are likely to occur. Meanwhile, the optimized thermal spray experiment results confirm that the residual stress at the BC/YSZ interface of the thermal barrier coating is tensile stress, with a maximum value of 155 MPa, which is consistent with the finite element calculation results. Furthermore, the failure modes of TBCs with rough interface conditions are discussed in detail. Our research provides important guidance for TBC design and optimizing their performance.

Funder

Key Basic Research Projects of Basic Strengthening Program

National Defense Basic Research

Training Program of the Major Research Plan of the National Natural Science Foundation of China

National Natural Science Foundation of China

National NSAF

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Natural Science Foundation of Shanghai

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3