The Effect of Temperature Distribution during Laser Heat Treatment of Gas-Nitrided 42CrMo4 Steel on the Microstructure and Mechanical Properties

Author:

Panfil-Pryka DominikaORCID,Kulka Michal,Makuch Natalia,Michalski Jerzy,Dziarski Piotr

Abstract

A gas-nitrided layer was produced on the toughened 42CrMo4 low-alloy steel using the changeable nitriding potential in order to limit the thickness of a brittle ε zone. The microstructure consisted of the compound ε + (ε + γ’) zone and diffusion zone (nitric sorbite with γ’ precipitates). Such a layer was subjected to laser heat treatment with or without remelting. The single laser tracks were formed using various laser beam powers (in the range of 0.234–0.624 kW) and scanning rates (in the range of 2.24–3.84 m·min−1) and the same laser beam diameter (2 mm). The microstructure of laser-modified nitrided layer usually consisted of re-melted zone (MZ) with coarse-grained nitric martensite Feα’ and possible ε precipitates, heat-affected zone (HAZ) with fine-grained nitric martensite Feα’ and γ’ precipitates and diffusion zone with nitric sorbite and γ’ precipitates. Sometimes, the compound zone was partially re-melted and an amount of iron nitrides remained in the MZ. Only one laser track was characterized by the different microstructure, consisting of the compound ε + (ε + γ’) zone, HAZ with fine-grained nitric martensite Feα’ and γ’ precipitates and diffusion zone with nitric sorbite and γ’ precipitates. This laser track was formed without visible effects of remelting. The effect of temperature distribution during laser heat treatment of gas-nitrided 42CrMo4 steel on the microstructure and mechanical properties was studied. The equations developed by Ashby and Esterling were used in order to determine the temperature distribution along the axis of each laser track. Taking into account the temperature profiles, it was possible to calculate the depths of MZ and HAZ. These predicted values were compared to those-measured based on the microstructure observations, obtaining good compatibility. The microstructure of the produced surface layers influenced the mechanical properties such as hardness and Young’s modulus. The hardness of MZ was higher than that of ε zone and lower than that of ε + γ’ zone when compared to nitrided layer. Whereas Young’s modulus of MZ was significantly higher than those characteristic of the compound zone in gas-nitrided layer (both ε and ε + γ’ zone) and similar to that of HAZ. The laser heat treatment (LHT) without remelting resulted in the similar hardness and slightly higher Young’s modulus of ε zone in comparison with the nitrided layer. Simultaneously, such a treatment of the nitrided layer did not influence the hardness and the Young’s modulus of ε + γ’ zone considerably. The hardness of HAZ was higher than that of MZ and that of the same area of diffusion zone in the nitrided layer because of the presence of fine-grained nitric martensite with γ’ precipitates after laser quenching.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference51 articles.

1. Fundamentals of Nitriding and Nitrocarburizing;Mittemeijer,2013

2. ZeroFlow Gas Nitriding of Steels;Małdziński,2015

3. Controlled gas nitriding of 40 HM and 38 HMJ steel grades with and without the surface compound layer, composed of iron nitrides;Michalski;Maint. Probl.,2006

4. Pore Formation Upon Nitriding Iron and Iron-Based Alloys: The Role of Alloying Elements and Grain Boundaries

5. Mechanical and microstructural aspects of C20-steel blades subjected to gas nitriding

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3