Improvement of Fatigue Strength in Additively Manufactured Aluminum Alloy AlSi10Mg via Submerged Laser Peening

Author:

Soyama Hitoshi1ORCID

Affiliation:

1. Department of Finemechanics, Tohoku University, Sendai 980-8579, Japan

Abstract

As the fatigue properties of as-built components of additively manufactured (AM) metals are considerably weaker than those of wrought metals because of their rougher surface, post-processing is necessary to improve the fatigue properties. To demonstrate the improvement in the fatigue properties of AM metals via post-processing methods, the fabrication of AlSi10Mg, i.e., PBF–LS/AlSi10Mg, through powder bed fusion (PBF) using laser sintering (LS) and its treatment via submerged laser peening (SLP), using a fiber laser and/or a Nd/YAG laser, was evaluated via plane bending fatigue tests. In SLP, laser ablation (LA) is generated by a pulsed laser and a bubble is generated after LA, which behaves like a cavitation bubble that is referred to as “laser cavitation (LC)”. In this paper, LA-dominated SLP is referred to as “laser treatment (LT)”, while LC collapse-dominated SLP is referred to as “laser cavitation peening (LCP)”, as the impact of LC collapse is used for peening. It was revealed that SLP using a fiber laser corresponded with LT rather than LCP. It was demonstrated that the fatigue strength at N = 107 was 85 MPa for LCP and 103 MPa for the combined process of blasting (B) + LT + LCP, whereas the fatigue strength of the as-built specimen was 54 MPa.

Funder

JSPS KAKENHI

JST CREST

Suzuki Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3