Preparation and Capacitive Properties of Ni-Doped Zinc Cobaltate/Carbon Fiber Composite Porous Mesh Materials

Author:

Chen Donghua1,Liu Yang1,Wang Jun1,Ma Tenghao1,Zhi Hui1,Xiao Wei1,Wang Yabin2,Wang Jing1

Affiliation:

1. School of Light Industry, Harbin University of Commerce, Harbin 150028, China

2. College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, China

Abstract

Nickel-element-doped zinc cobaltate/carbon fiber composites (Ni-ZnCo2O4/CF) were prepared on carbon cloth (made of a combination of carbon fibers) conductive substrates using a simple ambient stirring method combined with heat treatment. Characterization tests of the materials revealed that the prepared products were porous Ni-ZnCo2O4/CF mesh structures. This porous network structure increases the surface area of the material and helps shorten the diffusion path of ions and electrons. The samples were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) methods to investigate the effect of Ni elemental doping on the stability of the materials. The results show that there are no other impurity peaks and no other impurity elements in the Ni-ZnCo2O4/CF electrode material, which indicates that the sample purity is high. Meanwhile, the electrochemical properties of Ni-ZnCo2O4/CF electrode materials were studied. Under the condition of 15 A·g−1, the specific capacitance of Ni-ZnCo2O4/CF electrode material is 1470 F·g−1, and after 100 cycles, its specific capacity reaches 1456 F·g−1, which is 99.0% of the specific capacity of 1470 F·g−1, indicating that the electrode material has good stability. In addition, we assembled asymmetric supercapacitors (Ni-ZnCo2O4/CF//CNTs) with Ni-ZnCo2O4/CF as the positive material and carbon nanotubes (CNTs) as the negative material. In the cyclic stability experiment of Ni-ZnCo2O4/CF/CNTs devices, when the current density was 1 A·g−1, the specific capacitance was 182 F·g−1. After 10,000 cyclic charge–discharge tests, the specific capacity became 167 F·g−1, which was basically unchanged compared with the initial specific capacity, reaching 91.8%. It shows that it has higher charge–discharge performance and higher cycle stability.

Funder

provincial higher education institutions in Heilongjiang Province

Fund of State Key Laboratory of Efficient Utilization of Coal and Green Chemical Industry

Heilongjiang Provincial Youth Scientific Research Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3