Mutual Impact of Four Organic Calcium Salts on the Formation and Properties of Micro-Arc Oxidation Coatings on AZ31B Magnesium Alloys

Author:

Chen Changtian1,Shi Xiaoting1,Zhang Shufang1,Shen Youliang1,Zhao Ying2ORCID,Zhang Rongfa1ORCID,Zhao Rongfang1

Affiliation:

1. School of Materials and Energy, Jiangxi Science and Technology Normal University, Nanchang 330013, China

2. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Abstract

Calcium phosphate (Ca–P) coatings provide an effective approach in current research and the clinical application of Mg alloys by endowing them with improved corrosion resistance, biocompatibility, and even bioactivity. Ca-containing coatings were prepared on AZ31B magnesium alloys using the micro-arc oxidation (MAO) technique and a combination of ethylenediaminetetraacetic acid calcium disodium (EDTA–Ca), calcium glycerophosphate (GP–Ca), calcium gluconate (CaGlu2), and calcium lactate (CaLac2) as the Ca source in a near-neutral solution. The respective and mutual impacts of the four calcium salts on the formation and properties of the coatings were investigated. Experimental results indicated that GP–Ca was more decisive than EDTA–Ca, CaGlu2, and CaLac2 in the formation, morphology, and, therefore, the corrosion resistance of the coatings. GP–Ca alone could not effectively incorporate Ca2+ ions into the coatings but it could combine with EDTA–Ca, CaGlu2, and CaLac2 to bring a synergistic effect in improving the Ca content of the coatings. The bifunctional structure of CaGlu2 and CaLac2, containing hydroxyl groups and carboxylic groups with anchoring effects, enabled them to enhance the Ca content of the coatings. However, due to minor differences in functional group orientation, CaGlu2 was a little more efficient than CaLac2 in increasing Ca content, while CaLac2 was a little more efficient than CaGlu2 in improving the corrosion resistance of the coatings. Finally, the total concentration of the four calcium salts, [Ca2+]T, should be controlled at a proper level; otherwise, excessively high [Ca2+]T would produce localized microbumps originating from coating ablation, eventually deteriorating the corrosion resistance of the coatings.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

the Science and Technology Innovation Commission of Shenzhen

Open Project Program of Anhui Province Key Laboratory of Metallurgical Engineering and Resources Recycling

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3