Performance Improvement of GaN Based Laser Diode Using Pd/Ni/Au Metallization Ohmic Contact

Author:

Wang Wenjie,Xie Wuze,Deng Zejia,Yang Haojun,Liao Mingle,Li Junze,Luo Xiaojia,Sun Song,Zhao Degang

Abstract

We report an investigation of the effects of different metal systems and surface treatment on the contact performance of GaN lasers. We found that multi-element metal alloy and surface chemical treatment are the keys to achieve good ohmic behavior contacts on GaN laser diodes. Pd/Ni/Au contact demonstrates excellent thermal stability and lowest specific contact resistivity in these metal systems. Properly adjusting the thickness of the Pd and Ni layer and pretreating with the KOH solution can further improve the ohmic contact performance. The improved ohmic behavior of the KOH solution pretreated Pd/Ni/Au contact is attributed to removing surface oxides and the reduction of the schottky barrier heights due to the metal Pd has a high work function and the interfacial reactions occurring between the Pd, Ni, Au, and GaN extends into the GaN film. As a result, a low contact resistivity of 1.66 × 10−5 Ω·cm2 can be achieved from Pd(10 nm)/Ni(10 nm)/Au(30 nm) contacts with KOH solution pretreated on top of the laser diode structure. The power of the GaN based laser diode with the Pd/Ni/Au metallization ohmic contact can be enhanced by 1.95 times and the threshold current decreased by 37% compared to that of the conventional ohmic contact Ni/Au.

Funder

Science Challenge Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3