Insight on Corrosion Prevention of C1018 in 1.0 M Hydrochloric Acid Using Liquid Smoke of Rice Husk Ash: Electrochemical, Surface Analysis, and Deep Learning Studies

Author:

Kaban Agus Paul Setiawan,Soedarsono Johny Wahyuadi,Mayangsari WahyuORCID,Anwar Mochammad SyaifulORCID,Maksum Ahmad,Ridhova Aga,Riastuti RiniORCID

Abstract

This work reports the anti-corrosion behavior of liquid smoke from rice husk ash to unveil the contribution of its active compounds in 1 M HCl solution. In this study, the developed methodology to test, analyze, and model the novel type of green corrosion inhibitor for C1018 was characterized using Electrochemical impedance spectroscopy (EIS), Potentiodynamic polarization, and deep learning methods. The inhibitor structure was characterized by Fourier transform infrared analysis (FTIR) and Ultraviolet–visible spectroscopy (UV-Vis). The surface characterization of mild steel immersed in blank and 80 ppm solution inhibitor was performed using Atomic force microscopy (AFM) analysis. The corrosion test results show that the inhibitor is considered a mixed-type inhibitor to achieve the optimum inhibition of 80 ppm at 323 K, reaching up to 99% inhibition efficiency. The AFM results show a smoother surface given a lower skewness parameter at −0.5190 nm on the treated mild steel. The artificial neural network demonstrates the lower overfitting on the inhibited steel, a higher accuracy prediction of 81.08%, and a lower loss rate of 0.6001 to model the relationship between the EIS and Potentiodynamic polarization and the evolution of the passive layer on the treated mild steel. The experiment agrees well with the prediction result to model the adsorbed inhibitor. The work can be used as a guideline to pave the way for subsequent applicability in developing green corrosion inhibitors based on experimental and artificial intelligence approaches.

Funder

Kedaireka

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3