Optimization of Desired Multiple Resonant Modes of Compliant Parallel Mechanism Using Specific Frequency Range and Targeted Ratios

Author:

Low Vin1,Yeo Song Huat1,Pham Minh Tuan23ORCID

Affiliation:

1. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore

2. Department of Machine Design, Faculty of Mechanical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam

3. Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam

Abstract

In this paper, a dynamic optimization method capable of optimizing the dynamic responses of a compliant parallel mechanism (CPM), in terms of its multiple primary resonant modes, is presented. A novel two-term objective function is formulated based on the specific frequency range and targeted ratios. The first term of the function is used to optimize the first resonant mode of the CPM, within a specific frequency range. The obtained frequency value of the first mode is used in the second term to define the remaining resonant modes to be optimized in terms of targeted ratios. Using the proposed objective function, the resonant modes of a CPM can be customized for a specific purpose, overcoming the limitations of existing methods. A 6-degree-of-freedom (DoF) CPM with decoupled motion is synthesized, monolithically prototyped, and investigated experimentally to demonstrate the effectiveness of the proposed function. The experimental results showed that the objective function is capable of optimizing the six resonant modes within the desired frequency range and the targeted ratios. The highest deviation between the experimental results and the predictions among the six resonant modes is found to be 9.42%, while the highest deviation in the compliances is 10.77%. The ranges of motions are found to be 10.0 mm in the translations, and 10.8° in the rotations.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3