Abstract
In order to improve the adaptability of the lane keeping control system to complex environments, a dynamic lane tracking control strategy of the commercial vehicle based on the robust model predictive control (RMPC) algorithm is proposed considering the state of the preceding vehicle. An RMPC controller is designed with path deviation and control increment as the objective function. The model predictive control problem is transformed into a min–max optimization problem. The linear matrix inequality (LMI) is used for the optimal solution to obtain the optimal control quantity. The strategy to improve the safety and comfort dynamically in the process of lane keeping is designed by adjusting the weight coefficient matrix of RMPC based on fuzzy theory. The results of the simulation and HiL test show that the RMPC controller can meet the requirement of adjusting the lane tracking process dynamically according to the state of the preceding vehicle, which keeps the balance between safety and comfort.
Funder
National Natural Science Foundation of China
Key Research and Development Projects of Jiangsu Province
Six Talent Peaks Project in Jiangsu Province
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献