On the Integration of Complex Systems Engineering and Industry 4.0 Technologies for the Conceptual Design of Robotic Systems

Author:

Restrepo-Carmona Jaime Alonso1ORCID,Taborda Elkin A.2ORCID,Paniagua-García Esteban2ORCID,Escobar Carlos A.1ORCID,Sierra-Pérez Julián12ORCID,Vásquez Rafael E.12ORCID

Affiliation:

1. Corporación Rotorr, Universidad Nacional de Colombia, Cr. 45 26-85, Bogotá 111311, Colombia

2. School of Engineering, Universidad Pontificia Bolivariana, Medellín 050031, Colombia

Abstract

This paper presents a novel integration of Systems Engineering (SE) methodologies and Industry 4.0 (I4.0) technologies in the design of robotic systems, focusing on enhancing underwater robotic missions. Using the conceptual design of an underwater exploration vehicle as a case study, we demonstrate how SE can systematically incorporate I4.0 tools to improve mission performance and meet stakeholder expectations. The study begins with an overview of the SE approach, emphasizing the conceptual design stage and aligning it with the application and case study of design theories. We then explore various I4.0 technologies, highlighting their functional benefits rather than technical specifics and addressing design methods for I4.0. Remotely Operated Vehicles (ROVs) are examined in terms of classification, components, and tasks, showcasing their evolution driven by technological advancements, thus tackling the complexity and design of complex systems. The core of our study involves defining stakeholder expectations, using quality function deployment for requirements definition, and performing a functional and logical decomposition of the ROV system. To deal with design fixation within the design team, we developed a tool to help integrate new technologies by also empathizing with their functional capabilities rather than the technology itself. Our approach underscores the importance of understanding and incorporating new technologies functionally, aligning with the transition towards Industry/Society 5.0. This work not only illustrates the synergy between SE and I4.0, but also offers a structured methodology for advancing the design and functionality of complex systems, setting a blueprint for future developments in this field.

Funder

Universidad Pontificia Bolivariana

Universidad Nacional de Colombia

Publisher

MDPI AG

Reference104 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3