An Exergoeconomic Evaluation of an Innovative Polygeneration System Using a Solar-Driven Rankine Cycle Integrated with the Al-Qayyara Gas Turbine Power Plant and the Absorption Refrigeration Cycle

Author:

Talal Wadah1ORCID,Akroot Abdulrazzak1ORCID

Affiliation:

1. Branch of Mechanical Engineering, Faculty of Engineering, Karabük University, 78050 Karabük, Turkey

Abstract

This study aims to develop, evaluate, and improve a polygeneration system that combines solar and Brayton cycle technologies and focuses on the sequential integration of heat. In this configuration, the exhaust gases from the Al-Qayyarah gas turbine power plant and the parabolic trough collector (PTC) array generate steam through a high recovery steam generation process. An absorption refrigeration system also supplies the Brayton circuit with low-temperature air. This process is evaluated from a 3E perspective, which includes exergy, energy, and exergoeconomic analyses for two different configurations. These configurations are integrated solar combined cycle (ISCC) with and without absorption systems (ISCC and ISCC-ARC). In addition, a comprehensive analysis was carried out to assess the impact of critical factors on the output generated, the unit cost of the products, and the exergy and energy efficiency for each configuration. The results revealed that the power produced by the ISCC-ARC and ISCC systems is 580.6 MW and 547.4 MW, respectively. Accordingly, the total energy and exergy efficiencies for the ISCC-ARC are 51.15% and 49.4%, respectively, while for the ISCC system, they are 50.89% and 49.14%, respectively. According to the results, the total specific costs for the ISCC-ARC system increased from 69.09 $/MWh in June to 79.05 $/MWh in December. ISCC’s total specific costs also fluctuate throughout the year, from 72.56 $/MWh in June to 78.73 $/MWh in December.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3