Optimal Design of Axial Flux Permanent Magnet Motors for Ship RIM-Driven Thruster

Author:

Ouldhamrane HichemORCID,Charpentier Jean-FrédéricORCID,Khoucha FaridORCID,Zaoui AbdelhalimORCID,Achour YahiaORCID,Benbouzid MohamedORCID

Abstract

This paper deals with the design and optimization of a 2.1 MW rim-driven electric thruster for ship propulsion. For this purpose, a double stator ironless rotor axial flux permanent magnet (AFPM) motor is considered as the propulsion motor. The analytical model of the selected AFPM motor is presented. The magnetic field in the AFPM machine is calculated using the 3D magnetic charge concept in combination with image theory and permeance functions to take into account the stator slotting effects, and a simple thermal model is used to evaluate the heat dissipation capabilities of the machine and the thermal dependence of the main electromagnetic losses. To optimally design the AFPM, an optimization process based on genetic algorithms is applied to minimize the cost of the active motor materials. An appropriate objective function has been constructed, and different constraints related to the main electrical, geometrical, and mechanical parameters have been taken into account. The achieved results are compared with the performance of a podded radial flux permanent magnet (RFPM) motor, which is considered a reference propulsion motor. The obtained results show a fairly satisfactory improvement in the cost and masses of the active motor materials. Finally, the accuracy of the obtained optimum solution is validated by performing 3D finite element analysis (3D-FEA) simulations.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3