Lifetime Extension Method for Three-Phase Voltage Source Converters Using Discontinuous PWM Scheme with Hybrid Offset Voltage

Author:

Kim Jaechang1ORCID,Nguyen Minh-Hoang1ORCID,Kwak Sangshin1ORCID,Choi Seungdeog2

Affiliation:

1. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea

2. Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS 39762, USA

Abstract

This paper proposes a lifespan extension technique for three-phase voltage inverters using hybrid offset voltage. The proposed method lengthens the inverter lifetime by independently adjusting the switching frequency of the three phases in accordance with the aging degree. To reduce the switching operation of the phase with the shortest lifetime, the proposed technique injects the offset voltage for generalized discontinuous pulse-width modulation PWM (GDPWM) into the reference voltage in the region where the switching operation of the shortest lifespan phase can be stopped. When the switching operation does not need to be stopped, the offset voltage for space vector PWM (SVPWM) is injected into the reference voltage for high inverter load current quality. An offset voltage that varies according to the need to stop the switching operation is the proposed hybrid offset voltage. Using the proposed hybrid offset voltage, the switching frequencies of the three phases are independently controllable. In addition, since only the switching operation of the phase having the shortest lifespan is reduced, the load current quality in accordance with the switching operation reduction is good compared to the conventional method to simultaneously diminish all phase switching frequencies. The proposed method significantly increases the reliability of the three-phase voltage inverter, where the thermal stress of the phase having the shortest lifespan is decreased up to 55%, whereas the inverter lifetime can be increased by 10 times. The proposed technique was verified by simulations and experiments.

Funder

Korea government

Ministry of Science, ICT

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3