Crowning Method on Bearing Supporting Large Wind Turbine Spindle Considering the Flexibility of Structure of Shaft System

Author:

Liu XiangyangORCID,Niu Rongjun,Wang Bin,Zhang Shuai,Cui Yongcun,Zhang Zhanli

Abstract

To meet the precision design of bearings on large wind turbine spindles, a crowning method of bearing on wind turbine spindles considering the flexibility of the support structure is proposed. Firstly, a finite element (FE) model of the shaft system with a flexible structure is constructed by connecting the shaft and bearing through constraint equations (CE) and multi-point constraint (MPC) algorithms and replacing the bearing rollers with nonlinear spring elements and dampers. Then, the Newmark integration algorithm is used to solve the model and analyze the effect of the structure’s rigidity on the load distribution of bearings. Then, perform convergence analysis of the sequences of the spring load distribution using a high-pass filter based on fast Fourier transform (FFT) and root mean square error (RMSE) to obtain a suitable number of replacement springs. Finally, a sub-model of the upwind bearing is constructed with structured mesh. With the maximum Von Mises stress of the roller profile as the design target, the optimal logarithmic crowning of the roller and its tolerance zone under the given working conditions are obtained. The results show that the FE model of the shaft system proposed has good convergence. The FE model of the shaft system considering the flexibility of the support structure can obtain more accurate load distributions of bearings and can make the accurate crowning design of the bearing rollers based on the actual working conditions. This provides support for the precision design of bearings in large shaft systems.

Funder

National Natural Science Foundation of China

Key Research and Development Project of Shandong Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference26 articles.

1. Tribological advancements for reliable wind turbine performance;Doll;Philos. Trans.,2010

2. A review of wind turbine main bearings: Design, operation, modelling, damage mechanisms and fault detection;Hart;Wind. Energy Sci.,2020

3. Superelement-based modeling of load distribution in large-size slewing bearings;Smolnicki;J. Mech. Des.,2007

4. Effects of supporting structure and bolt connection on the fatigue life and carrying capacity of a slewing bearing;Chen;J. Eng. Tribol.,2016

5. Load Performance of Large-Scale Rolling Bearings With Supporting Structure in Wind Turbines;Chen;J. Tribol.,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3