Designing Behaviors of Robots Based on the Artificial Emotion Expression Method in Human–Robot Interactions

Author:

Li Liming1,Zhao Zeang1

Affiliation:

1. Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China

Abstract

How to express emotions through motion behaviors of robots (mainly for robotic arms) to achieve human–robot emotion interactions is the focus of this paper. An artificial emotion expression method that accords with human emotion that can deal with external stimuli and has the capability of emotion decision-making was proposed based on the motion behaviors of robot. Firstly, a three-dimensional emotion space was established based on the motion indexes (deviation coefficient, acceleration, and interval time). Then, an artificial emotion model, which was divided into three parts (the detection and processing of external events, the generation and modification of emotion response vectors, and the discretization of emotions) was established in the three-dimensional emotion space. Then emotion patterns (love, excited, happy, anxiety, hate) and emotion intensity were calculated based on the artificial emotion model in human–robot interaction experiments. Finally, the influence of motion behaviors of humanoid robot NAO on the emotion expression of experimenters was studied through human–robot emotion interaction experiments based on the emotion patterns and emotion intensity. The positive emotion patterns (love, excited, happy) and negative emotion patterns (anxiety, hate) of the experimenters were evaluated. The experimental results showed that the personalized emotion responses could be generated autonomously for external stimuli, and the change process of human emotions could be simulated effectively according to the established artificial emotion model. Furthermore, the experimenters could recognize the emotion patterns expressed by the robot according to the motion behaviors of the robot, and whether experimenters were familiar with robots did not influence the recognition of different emotion patterns.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3