Bearing Health State Detection Based on Informer and CNN + Swin Transformer

Author:

Liu Chunyang12ORCID,Zou Weiwei1,Hu Zhilei1,Li Hongyu1,Sui Xin13,Ma Xiqiang12ORCID,Yang Fang14,Guo Nan14

Affiliation:

1. School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471003, China

2. Longmen Laboratory, Luoyang 471000, China

3. Key Laboratory of Mechanical Design and Transmission System of Henan Province, Luoyang 471000, China

4. Collaborative Innovation Center of Machinery Equipment Advanced Manufacturing of Henan Province, Luoyang 471000, China

Abstract

In response to the challenge of timely fault identification in the spindle bearings of machine tools operating in complex environments, this study proposes a method based on a combination of infrared imaging with an Informer and a CNN + Swin Transformer. The aim is to achieve real-time monitoring of bearing faults, precise fault localization, and classification of fault severity. To accomplish this, an angular contact ball bearing was chosen as the research subject. Initially, an infrared image dataset was constructed, encompassing various fault positions and degrees, by simulating different forms of bearing faults. Subsequently, an Informer-based bearing temperature prediction model was established to select faulty bearing data. Lastly, the faulty data were input into the CNN + Swin Transformer model for bearing fault recognition and classification. The results demonstrate that the Informer model accurately identifies abnormal temperature rises during bearing operation, effectively screening out faulty bearings. Under steady-state conditions, the model achieves a classification accuracy of 97.8%. Furthermore, after employing the Informer screening process, the proposed model exhibits a recognition precision of 98.9%, surpassing other models such as CNN, SVM, and Swin Transformer, which are mentioned in this paper.

Funder

National Key R & D Program of China

Major Science and Technology Projects of Longmen Laboratory

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3