Towards Self-Adaptability of Instrumented Electromagnetic Energy Harvesters

Author:

Carneiro Pedro M. R.ORCID,Ferreira Jorge A. F.ORCID,Kholkin Andrei L.ORCID,Soares dos Santos Marco P.ORCID

Abstract

Motion-driven electromagnetic energy harvesting is a well-suited technological solution to autonomously power a broad range of autonomous devices. Although different harvester configurations and mechanisms have been already proposed to perform effective tuning and broadband harvesting, no methodology has proven to be effective to maximize the harvester performance for unknown and time-varying patterns of mechanical power sources externally exciting the harvesters. This paper provides, for the first time, a radically new concept of energy harvester to maximize the harvested energy for time-varying excitations: the self-adaptive electromagnetic energy harvester. This research work aims to analyze the electric energy harvesting gain when self-adaptive electromagnetic harvesters, using magnetic levitation architectures, are able to autonomously adapt their architecture as variations in the excitation patterns occur. This was accomplished by identifying the optimal harvester length for different excitation patterns and load resistances. Gains related to electric current and power exceeding 100 can be achieved for small-scale harvesters. The paper also describes comprehensive case studies to verify the feasibility of the self-adaptive harvester, considering the energy demand from the adaptive mechanism, namely the sensing, processing and actuation systems. These successful results highlight the potential of this innovative methodology to design highly sophisticated energy harvesters, both for a small- and large-scale power supply.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3