Fault Detection of Rotating Machines Using poly-Coherent Composite Spectrum of Measured Vibration Responses with Machine Learning

Author:

Almutairi Khalid12ORCID,Sinha Jyoti K.1ORCID,Wen Haobin1

Affiliation:

1. Dynamics Laboratory, School of Engineering, University of Manchester, Manchester M13 9PL, UK

2. Department of Mechanical Engineering, College of Engineering, University of Hafr Al Batin, PO Box 1803, Hafr Al Batin 31991, Saudi Arabia

Abstract

This study presents an efficient vibration-based fault detection method for rotating machines utilising the poly-coherent composite spectrum (pCCS) and machine learning techniques. pCCS combines vibration measurements from multiple bearing locations into a single spectrum, retaining amplitude and phase information while reducing background noise. The use of pCCS significantly reduces the number of extracted parameters in the frequency domain compared to using individual spectra at each measurement location. This reduction in parameters is crucial, especially for large industrial rotating machines, as processing and analysing extensive datasets demand significant computational resources, increasing the time and cost of fault detection. An artificial neural network (ANN)-based machine learning model is then employed for fault detection using these reduced extracted parameters. The methodology is developed and validated on an experimental rotating machine at three different speeds: below the first critical speed, between the first and second critical speeds, and above the second critical speed. This range of speeds represents the diverse dynamic conditions commonly encountered in industrial settings. This study examines both healthy machine conditions and various simulated fault conditions, including misalignment, rotor-to-stator rub, shaft cracks, and bearing faults. By combining the pCCS technique with machine learning, this study enhances the reliability, efficiency, and practical applicability of fault detection in rotating machines under varying dynamic conditions and different machine conditions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3