Comparison of Culture Media for In Vitro Expansion of Oral Epithelial Keratinocytes

Author:

Cuadra Giancarlo A.1,Shamim Abrar12ORCID,Shah Raivat1,Morgan Joey3,Palazzolo Dominic L.4ORCID

Affiliation:

1. Department of Biology, Muhlenberg College, 2400 W. Chew Street, Allentown, PA 18104, USA

2. College of Dental Medicine, Columbia University, New York, NY 10032, USA

3. College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA

4. Department of Physiology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA

Abstract

Background: Expansion of OKF6/TERT-2 oral epithelial cells in vitro is important for studying the molecular biology of disease and pathology affecting the oral cavity. Keratinocyte serum-free medium (KSFM) is the medium of choice for this cell line. This study compares three media for OKF6/TERT-2 cultures: KSFM, Dulbecco’s Modified Eagle Medium/Nutrient Mixture of Hams F-12 (DMEM/F12), and a composite medium comprised of DMEM/F-12 and KSFM (1:1 v/v), referred to as DFK. The toxicological effects of electronic cigarette liquids (e-liquids) on OKF6/TERT-2 cells cultured in these media were also compared. Methods: Cells were cultured in KSFM, DMEM/F12, or DFK, and cellular morphology, growth, wound healing and the gene expression of mucins and tight junctions were evaluated. Additionally, cytotoxicity was determined after e-liquid exposures. Results: Switching from KSFM to DMEM/F12 or DFK 24 h post-seeding leads to typical cellular morphologies, and these cultures reach confluency faster than those in KSFM. Wound-healing recovery occurred fastest in DFK. Except for claudin-1, there is no difference in expression of the other genes tested. Additionally, e-liquid cytotoxicity appears to be amplified in DFK cultures. Conclusions: DMEM/F12 and DFK are alternative media for OKF6/TERT-2 cell culture to study the molecular biology of disease and pathology, provided cells are initially seeded in KSFM.

Funder

Muhlenberg College and DeBusk College of Osteopathic Medicine, Lincoln Memorial University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3