GC×GC-TOFMS Analysis of Fecal Metabolome Stabilized Using an At-Home Stool Collection Device

Author:

Giebelhaus Ryland T.12ORCID,Nguyen Gwen12,Schmidt Sheri A.12,Wang Seoin12,Mesfin Ewenet Y.12,Nam Seo Lin12ORCID,de la Mata A. Paulina12,Harynuk James J.12ORCID

Affiliation:

1. Department of Chemistry, University of Alberta, Edmonton, AB T6G 2N4, Canada

2. The Metabolomics Innovation Centre, Edmonton, AB T6G 2E9, Canada

Abstract

Stool is a mixture of excrement, microbiota, enzymes, undigested material, and small molecules. Fecal metabolomics has gained interest recently, owing to advances in metabolomics and growing research into both the host’s physiology and the gut microbiome. One challenge with fecal metabolomics is preserving the sample integrity from collection until analysis, as the microbiota and enzymes continue to alter the metabolome following defecation. Currently, flash-freezing or lyophilization are utilized to minimize post-collection metabolome changes; however, this requires complex equipment and immediate processing, precluding the possibility for at-home sampling. Commercial devices containing stabilizing solvents have been developed to facilitate at-home collection, ambient transport, and sample storage. Here, we explore the efficacy of a commercially available stool collection device with a stabilization reagent tailored to fecal metabolomics. Stool samples from six donors were either processed shortly post-collection or stored at room temperature for seven days in the tube, with and without the stabilization reagent. Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS)-based untargeted metabolomics was utilized for analyzing extracted metabolites. Chemometric analysis was used to evaluate the performance of the device. We found that the device with the stabilization reagent minimized changes in the metabolite profile relative to unstabilized stool left at room temperature for one week.

Funder

Natural Sciences and Engineering Research Council of Canada

Canadian Institutes of Health Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3