DOTA: Deep Learning Optimal Transport Approach to Advance Drug Repositioning for Alzheimer’s Disease

Author:

Chyr Jacqueline,Gong Haoran,Zhou Xiaobo

Abstract

Alzheimer’s disease (AD) is the leading cause of age-related dementia, affecting over 5 million people in the United States and incurring a substantial global healthcare cost. Unfortunately, current treatments are only palliative and do not cure AD. There is an urgent need to develop novel anti-AD therapies; however, drug discovery is a time-consuming, expensive, and high-risk process. Drug repositioning, on the other hand, is an attractive approach to identify drugs for AD treatment. Thus, we developed a novel deep learning method called DOTA (Drug repositioning approach using Optimal Transport for Alzheimer’s disease) to repurpose effective FDA-approved drugs for AD. Specifically, DOTA consists of two major autoencoders: (1) a multi-modal autoencoder to integrate heterogeneous drug information and (2) a Wasserstein variational autoencoder to identify effective AD drugs. Using our approach, we predict that antipsychotic drugs with circadian effects, such as quetiapine, aripiprazole, risperidone, suvorexant, brexpiprazole, olanzapine, and trazadone, will have efficacious effects in AD patients. These drugs target important brain receptors involved in memory, learning, and cognition, including serotonin 5-HT2A, dopamine D2, and orexin receptors. In summary, DOTA repositions promising drugs that target important biological pathways and are predicted to improve patient cognition, circadian rhythms, and AD pathogenesis.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3