A Quasi-Steady Model for Estimating the Rate of Frost Heave When Subjected to Overburden Pressure

Author:

Chen Lei1ORCID,Zhang Xiyan2ORCID

Affiliation:

1. College of Civil Engineering and Architecture, Qingdao Agricultural University, Qingdao 266109, China

2. School of Architecture and Engineering, Qingdao Binhai University, Qingdao 266555, China

Abstract

The soil beneath buildings constructed in cold regions is affected by frost heave, causing the walls to crack and even the buildings to incline and collapse. Therefore, predicting the frost heave when subjected to overburden pressure is crucial for engineering buildings in cold areas. Utilizing the conservation equation of mass, Darcy’s equation, and the assumption that the pore water pressure at the top of a frozen fringe, denoted as uw, during the quasi-steady state can be approximately estimated using the Clapeyron equation, a quasi-steady frost heave rate model considering the overburden pressure was proposed. This study considered the difference in pore water pressure within the frozen fringe, which causes water to move from the unfrozen zone to the ice lens, where it subsequently accumulates and freezes into ice. The pore water pressure at the bottom of the frozen fringe, denoted as uu, can be estimated using the soil water characteristic curve (SWCC). The thickness of the frozen fringe was determined using the freezing temperature, segregation temperature, and temperature gradient. The segregation temperature was determined using the two-point method. Additionally, the model suggested that, when uw = uu, the movement of water stopped, leading to the end of frost heave. To validate the proposed model, three existing frost-heaving experiments were analyzed. The findings demonstrated that the estimated rates of frost heave of the samples closely matched the experimental data. Additionally, external pressure delayed water migration. This study can offer theoretical support for building engineering in cold regions.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

Qingdao Binhai University Campus Foundation

Publisher

MDPI AG

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3