Effect of Hypertrophic Scar Fibroblast-Derived Exosomes on Keratinocytes of Normal Human Skin

Author:

Cui Hui Song1,Joo So Young2,Lee Seung Yeol3ORCID,Cho Yoon Soo2ORCID,Kim Dong Hyun4ORCID,Seo Cheong Hoon2ORCID

Affiliation:

1. Burn Institute, Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea

2. Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea

3. Department of Physical Medicine and Rehabilitation, College of Medicine, Soonchunhyang University Hospital, Bucheon 14158, Republic of Korea

4. Department of Rehabilitation Medicine, Kangdong Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 05355, Republic of Korea

Abstract

Epidermal keratinocytes are highly activated, hyper-proliferated, and abnormally differentiated in the post-burn hypertrophic scar (HTS); however, the effects of scar fibroblasts (SFs) on keratinocytes through cell–cell interaction in HTS remain unknown. Here, we investigated the effects of HTSF-derived exosomes on the proliferation and differentiation of normal human keratinocytes (NHKs) compared with normal fibroblasts (NFs) and their possible mechanism to provide a reference for clinical intervention of HTS. Fibroblasts were isolated and cultured from HTS and normal skin. Both HTSF-exosomes and NF-exosomes were extracted via a column-based method from the cell culture supernatant. NHKs were treated for 24 or 48 h with 100 μg/mL of cell-derived exosomes. The expression of proliferation markers (Ki-67 and keratin 14), activation markers (keratins 6, 16, and 17), differentiation markers (keratins 1 and 10), apoptosis factors (Bax, Bcl2, caspase 14, and ASK1), proliferation/differentiation regulators (p21 and p27), and epithelial–mesenchymal transition (EMT) markers (E-cadherin, N-cadherin, and vimentin) was investigated. Compared with NF-exosomes, HTSF-exosomes altered the molecular pattern of proliferation, activation, differentiation, and apoptosis, proliferation/differentiation regulators of NHKs, and EMT markers differently. In conclusion, our findings indicate that HTSF-derived exosomes may play a role in the epidermal pathological development of HTS.

Funder

the National Research Foundation of Korea (NRF) funded by the Ministry of Education

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3