Src-FAK Signaling Mediates Interleukin 6-Induced HCT116 Colorectal Cancer Epithelial–Mesenchymal Transition

Author:

Huang Yu-Han1,Chen Han-Kun2,Hsu Ya-Fen3,Chen Hsiu-Chen4,Chuang Chin-Hui5,Huang Shiu-Wen4567,Hsu Ming-Jen458

Affiliation:

1. Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA

2. Department of General Surgery, Chi Mei Medical Center, Tainan 710, Taiwan

3. Division of General Surgery, Department of Surgery, Landseed Hospital, Taoyuan 324, Taiwan

4. Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan

5. Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan

6. Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan

7. Research Center of Thoracic Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan

8. Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan

Abstract

Colorectal cancer is one of the most prevalent and lethal malignancies, affecting approximately 900,000 individuals each year worldwide. Patients with colorectal cancer are found with elevated serum interleukin-6 (IL-6), which is associated with advanced tumor grades and is related to their poor survival outcomes. Although IL-6 is recognized as a potent inducer of colorectal cancer progression, the detail mechanisms underlying IL-6-induced colorectal cancer epithelial–mesenchymal transition (EMT), one of the major process of tumor metastasis, remain unclear. In the present study, we investigated the regulatory role of IL-6 signaling in colorectal cancer EMT using HCT116 human colorectal cancer cells. We noted that the expression of epithelial marker E-cadherin was reduced in HCT116 cells exposed to IL-6, along with the increase in a set of mesenchymal cell markers including vimentin and α-smooth muscle actin (α-SMA), as well as EMT transcription regulators—twist, snail and slug. The changes of EMT phenotype were related to the activation of Src, FAK, ERK1/2, p38 mitogen-activated protein kinase (p38MAPK), as well as transcription factors STAT3, κB and C/EBPβ. IL-6 treatment has promoted the recruitment of STAT3, κB and C/EBPβ toward the Twist promoter region. Furthermore, the Src-FAK signaling blockade resulted in the decline of IL-6 induced activation of ERK1/2, p38MAPK, κB, C/EBPβ and STAT3, as well as the decreasing mesenchymal state of HCT116 cells. These results suggested that IL-6 activates the Src-FAK-ERK/p38MAPK signaling cascade to cause the EMT of colorectal cancer cells. Pharmacological approaches targeting Src-FAK signaling may provide potential therapeutic strategies for rescuing colorectal cancer progression.

Funder

National Science and Technology Council

Taipei Medical University Hospital

Chi Mei Medical Center

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3