Immuno-Stimulating Activity of 1,25-Dihydroxyvitamin D in Blood Cells from Five Healthy People and in Blasts from Five Patients with Leukemias and Pre-Leukemic States

Author:

Marchwicka Aleksandra1,Nowak Kuba2,Satyr Anastasiia3ORCID,Wołowiec Dariusz4,Marcinkowska Ewa1ORCID

Affiliation:

1. Department of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland

2. Faculty of Mathematics and Computer Science, University of Wrocław, Joliot-Curie 15, 50-383 Wrocław, Poland

3. Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland

4. Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wrocław Medical University, Pasteura 4, 50-367 Wrocław, Poland

Abstract

(1) Hematological malignancies are characterized by an immortalization, uncontrolled proliferation of blood cells and their differentiation block, followed by the loss of function. The primary goal in the treatment of leukemias is the elimination of rapidly proliferating leukemic cells (named blasts). However, chemotherapy, which removes proliferating blasts, also prevents the remaining immune cells from being activated. Acute leukemias affect elderly people, who are often not fit to survive aggressive chemotherapy. Therefore, there is a need of milder treatment, named differentiation therapy, which might simulate the immune system of the patient. 1,25-Dihydroxyvitamin D, or low-calcemic analogs of this compound, were proposed as supporting therapy in acute leukemias. (2) Bone marrow blasts from patients with hematological malignancies, and leukocytes from healthy volunteers were ex vivo exposed to 1,25-dihydroxyvitamin D, and then their genomes and transcriptomes were investigated. (3) Our analysis indicates that 1,25-dihydroxyvitamin D regulates in blood cells predominantly genes involved in immune response, such as CAMP (cathelicidin antimicrobial peptide), CP (ceruloplasmin), CXCL9 (C-X-C motif chemokine ligand 9), CD14 (CD14 molecule) or VMO1 (vitelline membrane outer layer 1 homolog). This concerns blood cells from healthy people, as well as blasts from patients with hematological malignancies. In addition, in one patient, 1,25-dihydroxyvitamin D significantly downregulated transcription of genes responsible for cell division and immortalization. (4) In conclusion, the data presented in this paper suggest that addition of 1,25-dihydroxyvitamin D to the currently available treatments would stimulate immune system, inhibit proliferation and reduce immortal potential of blasts.

Funder

National Science Centre in Poland

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3