Novel Transcriptomic Interactomes of Noncoding RNAs in the Heart under Altered Thyroid Hormonal States

Author:

Rajagopalan Viswanathan123ORCID,Chakraborty Sankalpa23,Lin Richard1

Affiliation:

1. New York Institute of Technology College of Osteopathic Medicine, Arkansas State University, Jonesboro, AR 72401, USA

2. Molecular Biosciences Graduate Program, College of Sciences and Mathematics, Arkansas State University, Jonesboro, AR 72401, USA

3. Arkansas Biosciences Institute, Jonesboro, AR 72401, USA

Abstract

Noncoding RNAs are emerging as vital players in cardiovascular diseases. Thyroid hormones (THs) are crucial for cardiovascular survival; however, correction of systemic hypothyroidism (low serum THs) may not improve cardiac tissue-level hypothyroidism or cardiac function. Mechanistically, the understanding of noncoding transcriptomic interactions influencing TH-mediated cardiac effects is unclear. Adult C57BL/6J mixed-sex mice were randomized into Control, Hypothyroid (HypoTH), Hyperthyroid (HyperTH), and HypoTH-Triiodothyronine restoration groups. Physiological, morphological, biochemical, molecular, and whole transcriptomic studies and appropriate statistical analyses were performed. HypoTH showed significant atrophy, depressed cardiac function, and decreased serum THs versus controls, and Triiodothyronine supplementation restored them. HyperTH significantly increased serum THs with hypertrophy. Real-time PCR showed significantly altered inflammatory and immune lncRNAs. The transcriptomic sequencing revealed significant differential expressions of lncRNAs, miRNAs, and mRNAs. Eleven novel circRNAs significantly decreased with increased THs. Multiple pathways were GO-/KEGG-enriched, including cardiac, thyroid, cancer, mitochondrial, inflammatory, adrenergic, metabolic, immune-mediated, vesicular, etc. We also uncovered significant novel co-expression and interactions of lncRNA-miRNA, lncRNA-miRNA-mRNA, lncRNA-mRNA, circRNA-miRNA, and miRNA-mRNA, and splicing events. This includes a novel pathway by which the predominant cardiac TH receptor alpha may interact with specific lncRNAs and miRNAs. This is the first study reporting a comprehensive transcriptome-wide interactome in the cardiac–thyroid axis.

Funder

New York Institute of Technology

Arkansas Biosciences Institute

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3