NF-κB Transcriptional Activity Indispensably Mediates Hypoxia–Reoxygenation Stress-Induced microRNA-210 Expression

Author:

Marwarha Gurdeep1,Slagsvold Katrine Hordnes12,Høydal Morten Andre1ORCID

Affiliation:

1. Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway

2. Department of Cardiothoracic Surgery, St. Olavs University Hospital, 7030 Trondheim, Norway

Abstract

Ischemia–reperfusion (I-R) injury is a cardinal pathophysiological hallmark of ischemic heart disease (IHD). Despite significant advances in the understanding of what causes I-R injury and hypoxia–reoxygenation (H-R) stress, viable molecular strategies that could be targeted for the treatment of the deleterious biochemical pathways activated during I-R remain elusive. The master hypoxamiR, microRNA-210 (miR-210), is a major determinant of protective cellular adaptation to hypoxia stress but exacerbates apoptotic cell death during cellular reoxygenation. While the hypoxia-induced transcriptional up-regulation of miR-210 is well delineated, the cellular mechanisms and molecular entities that regulate the transcriptional induction of miR-210 during the cellular reoxygenation phase have not been elucidated yet. Herein, in immortalized AC-16 cardiomyocytes, we delineated the indispensable role of the ubiquitously expressed transcription factor, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) in H-R-induced miR-210 expression during cellular reoxygenation. Using dominant negative and dominant active expression vectors encoding kinases to competitively inhibit NF-κB activation, we elucidated NF-κB activation as a significant mediator of H-R-induced miR-210 expression. Ensuing molecular assays revealed a direct NF-κB-mediated transcriptional up-regulation of miR-210 expression in response to the H-R challenge that is characterized by the NF-κB-mediated reorchestration of the entire repertoire of histone modification changes that are a signatory of a permissive actively transcribed miR-210 promoter. Our study confers a novel insight identifying NF-κB as a potential novel molecular target to combat H-R-elicited miR-210 expression that fosters augmented cardiomyocyte cell death.

Funder

The Liaison Committee

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference108 articles.

1. HypoxamiR Regulation and Function in Ischemic Cardiovascular Diseases;Greco;Antioxid. Redox Signal.,2013

2. MicroRNA-210: A unique and pleiotropic hypoxamir;Chan;Cell Cycle,2010

3. Hypoxia-Inducible mir-210 Regulates Normoxic Gene Expression Involved in Tumor Initiation;Huang;Mol. Cell,2009

4. Mir-210: Fine-Tuning the Hypoxic Response;Mircea;Adv. Exp. Med. Biol.,2014

5. MiRNA-210: A Current Overview;Bavelloni;Anticancer. Res.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3