RanBP1: A Potential Therapeutic Target for Cancer Stem Cells in Lung Cancer and Glioma

Author:

Kahm Yeon-Jee12ORCID,Kim In-Gyu12,Kim Rae-Kwon12ORCID

Affiliation:

1. Department of Radiation Biology, Environmental Safety Assessment Research Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon 34057, Republic of Korea

2. Department of Radiation Science and Technology, Korea University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea

Abstract

Cancer stem cells (CSCs) are known to be one of the factors that make cancer treatment difficult. Many researchers are thus conducting research to efficiently destroy CSCs. Therefore, we sought to suggest a new target that can efficiently suppress CSCs. In this study, we observed a high expression of Ran-binding protein 1 (RanBP1) in lung cancer stem cells (LCSCs) and glioma stem cells (GSCs). Upregulated RanBP1 expression is strongly associated with the expression of CSC marker proteins and CSC regulators. In addition, an elevated RanBP1 expression is strongly associated with a poor patient prognosis. CSCs have the ability to resist radiation, and RanBP1 regulates this ability. RanBP1 also affects the metastasis-associated epithelial–mesenchymal transition (EMT) phenomenon. EMT marker proteins and regulatory proteins are affected by RanBP1 expression, and cell motility was regulated according to RanBP1 expression. The cancer microenvironment influences cancer growth, metastasis, and cancer treatment. RanBP1 can modulate the cancer microenvironment by regulating the cytokine IL-18. Secreted IL-18 acts on cancer cells and promotes cancer malignancy. Our results reveal, for the first time, that RanBP1 is an important regulator in LCSCs and GSCs, suggesting that it holds potential for use as a potential therapeutic target.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3