Synthesis of ZnAl2O4 and Evaluation of the Response in Propane Atmospheres of Pellets and Thick Films Manufactured with Powders of the Oxide

Author:

Huízar-Padilla EmilioORCID,Guillén-Bonilla HéctorORCID,Guillén-Bonilla AlexORCID,Rodríguez-Betancourtt Verónica-María,Sánchez-Martínez A.,Guillen-Bonilla José TrinidadORCID,Gildo-Ortiz Lorenzo,Reyes-Gómez Juan

Abstract

ZnAl2O4 nanoparticles were synthesized employing a colloidal method. The oxide powders were obtained at 300 °C, and their crystalline phase was corroborated by X-ray diffraction. The composition and chemical structure of the ZnAl2O4 was carried out by X-ray and photoelectron spectroscopy (XPS). The optical properties were studied by UV-vis spectroscopy, confirming that the ZnAl2O4 nanoparticles had a direct transition with bandgap energy of 3.2 eV. The oxide’s microstructures were microbars of ~18.2 nm in size (on average), as analyzed by scanning (SEM) and transmission (TEM) electron microscopies. Dynamic and stationary gas detection tests were performed in controlled propane atmospheres, obtaining variations concerning the concentration of the test gas and the operating temperature. The optimum temperatures for detecting propane concentrations were 200 and 300 °C. In the static test results, the ZnAl2O4 showed increases in propane response since changes in the material’s electrical conductance were recorded (conductance = 1/electrical resistance, Ω). The increases were ~2.8 at 200 °C and ~7.8 at 300 °C. The yield shown by the ZnAl2O4 nanoparticles for detecting propane concentrations was optimal compared to other similar oxides categorized as potential gas sensors.

Funder

National Council of Science and Technology of Mexico

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3