Climate Adaptation and Drift Shape the Genomes of Two Eel-Goby Sister Species Endemic to Contrasting Latitude

Author:

Lü Zhenming1,Liu Tianwei1,Liu Yantao1,Wang Yuzhen2,Liu Jing1,Liu Bingjian1,Gong Li1,Liu Liqin1

Affiliation:

1. National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China

2. National Engineering Research Center for Facilitated Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China

Abstract

Deciphering the role of climate adaptation in generating genetic divergence and hence speciation is a central question in evolution. Comparisons of genomes of closely related species spanning selective climate gradients are particularly informative in discerning the signatures of selection and thereby providing valuable information concerning the role of climate adaptation in speciation. Here we re-sequenced 99 genomes of the two sister eel-goby species Odontamblyopus lacepedii and O. rebecca, which are endemic to tidal mudflats spanning contrasting latitude gradients, to estimate the influence of divergent climate selection on shaping genome-wide patterns of divergence. The results indicated that genome-wide differentiation between the two species was evident (genome-wide FST = 0.313). Against a background of high baseline genomic divergence, 588 and 1202 elevated divergent loci were detected to be widespread throughout their genomes, as opposed to focused within small islands of genomic regions. These patterns of divergence may arise from divergent climate selection in addition to genetic drift acting through past glacial segregation (1.46 million years ago). We identified several candidate genes that exhibited elevated divergence between the two species, including genes associated with substance metabolism, energy production, and response to environmental cues, all putative candidates closely linked to thermal adaptation expected from the latitude gradient. Interestingly, several candidates related to gamete recognition and time of puberty, and also exhibited elevated divergence, indicating their possible role in pre-zygote isolation and speciation of the two species. Our results would expand our knowledge on the roles of latitude climate adaptation and genetic drift in generating and maintaining biodiversity in marine teleosts.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3