Optimizing the Adipogenic Induction Protocol Using Rosiglitazone Improves the Physiological Parameters and Differentiation Capacity of Adipose Tissue-Derived Mesenchymal Stem Cells for Horses, Sheep, Dogs, Murines, and Humans

Author:

Heimann Manuela1,Elashry Mohamed I.1ORCID,Klymiuk Michele C.1ORCID,Eldaey Asmaa2,Wenisch Sabine2,Arnhold Stefan1ORCID

Affiliation:

1. Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany

2. Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany

Abstract

The investigation of adipose tissue-derived mesenchymal stem cells (ASCs) has received considerable interest in regenerative medicine. A nontoxic adipogenic induction protocol valid for cells of different mammalian species has not been described. This study aims to establish an adipogenic differentiation protocol suitable for horses, sheep, dogs, murines, and human cells. An optimized rosiglitazone protocol, consisting of 5% fetal calf serum in Dulbecco’s Modified Eagle’s Medium, 10 μg/mL insulin, 0.55 μg/mL transferrin, 6.8 ng sodium selenite, 1 μM dexamethasone, and 1–5 μM of rosiglitazone, is compared to the 3-isobutyl-1-methylxantine (IBMX) protocol, where rosiglitazone was replaced with 0.5 mM IBMX and 0.2 mM indomethacin. Cell viability, cytotoxicity, a morphometric analysis of the lipid, and the expression of adipogenic markers for 14 days were assessed. The data revealed that using 5 µM of rosiglitazone promotes the adipogenic differentiation capacity in horse, sheep, and dog cells compared to IBMX induction. Meanwhile, marked reductions in the cell viability and cell number with the IBMX protocol were detected, and rosiglitazone increased the cell number and lipid droplet size, prevented apoptosis, and upregulated FABP-4 and Leptin expression in the cells of most of the species. Our data revealed that the rosiglitazone protocol improves the adipogenesis of ASCs, together with having less toxicity, and should be considered for cell reproducibility and clinical applications targeting obesity.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3